Selasa, 26 Januari 2016

Half adder dan Full adder

HALF ADDER


Sebuah rangkaian Adder terdiri dari Half Adder dan Full Adder. Half Adder menjumlahkan dua buah bit input, dan menghasilkan nilai jumlahan (sum) dan nilai lebihnya (carry-out). Half Adder diletakkan sebagai penjumlah dari bit-bit terendah (Least Significant Bit). oleh karena itu dinamakan penjumlah tak lengkap.

  1. Jika A=0 dan B=0 dijumlahkan, hasilnya S (Sum) = 0.
  2.  Jika A=0 dan B=1 dijumlahkan, hasilnya S (Sum) = 1.
  3. Jika A=1 dan B=1 dijumlahkan, hasilnya S (Sum) = 0. dengan nilai pindahan Ce(Carry Out) = 1.


Dengan demikian, half adder memiliki 2 masukan (A dan B) dan dua keluaran (S dan Ce)

A
B
H
Ce
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1


Dari tabel di atas, perhatikanlah sinyal " 1 "  pada “H” dan “Ce” dapat dikembangkan persamaan fungsi seperti di bawah ini.
Hasil .
H = ( A Λ B ) v ( A Λ B ) = A v B       ( Ex - OR )

Ce = A Λ B                                          ( AND )
Dari kedua persamaan di atas dapat dikembangkan rangkaian Half Adder seperti di bawah ini.
half adder







Ø  FULL ADDER
Half Adder tidak dapat digunakan untuk melakukan proses penjumlahan dua buah bilangan yang masing-masing terdiri dari beberapa digit ( multi digit ). Penjumlahan yang terdiri dari beberapa bit harus menyertakan carry pada digit yang lebih tinggi berikutnya dan solusi penjumlah yang demikian disebut Full Adder ( FA ), dimana disamping input A dan B disertakan juga Carry sebagai bagian dari input.
Tabel kebenaran dari Full Adder


A
B
Ci
H
Ce
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1


= ( A Λ B Λ Ci ) v ( A Λ B Λ Ci ) v ( A Λ B Λ Ci ) v ( A Λ B Λ Ci )
Sesuai Hukum Distributive pada Aljabar Boole, persamaan fungsi di atas menjadi,
H         = [ ( A Λ B ) v ( A Λ B ) ] Λ Ci v [ ( A Λ B ) v ( A Λ B ) ] Λ Ci
= [ ( A Λ B ) v ( A Λ B ) ] Λ Ci v ( 1 Λ Ci )
= [ ( A Λ B ) v ( A Λ B ) ] Λ ( Ci v Ci )
 = ( A V B ) V C = A V B V C
Disamping persamaan Hasil juga terdapat persamaan untuk Carry seperti di bawah ini,
Ce = ( A Λ B Λ Ci ) v ( A Λ B Λ Ci ) v ( A Λ B Λ Ci ) v ( A Λ B Λ Ci )
Persamaan ini dapat disederhanakan menjadi,
Ce = ( A Λ B ) v ( B Λ Ci ) v ( A Λ Ci )
Dari kedua persamaan di atas dapat dikembangkan menjadi rangkaian digital Full Adder .
ebenaran dari Full Adder :

full adder







Sekian mengenai Half dan Full adder yang bisa saya bagi. kalo ada kurangnya silahkan tulis di Komentar. jadi Terima Kasih

Tidak ada komentar:

Posting Komentar

Routing RIP Mikrotik dengan IPv4

1. Buka Software “Winbox” Yang sudah ada di Laptop kita . 2. Sambungkan Router pusat  Dengan Router kita  dengan port ” Ethernet 1 “ dan ...